Filamentous organisms and foam formers

Caroline Kragelund & Per Halkjær Nielsen
Section of Biotechnology, Aalborg University, Denmark

PhD course: Microbial ecology in wastewater treatment, 2010

Content of talk

- Background
- Identity of filamentous bacteria
- Ecophysiology methods
 - What do they eat
 - Under what electron acceptor conditions
 - Storage potential, enzymatic degradation
- Ecophysiology of gene probe defined filamentous bacteria
- Formulating control strategies
 - Specific for a certain filamentous bacteria
 - Non specific

Cause of bulking and/or foaming incidences
- Hydraulic overload
- Construction
- Overload of lipids
- Toxication
- Physio-chemical conditions
- Non-filamentous bacteria
- Filamentous bacteria

Measurements to detect bulking
- Sludge volume index (SVI)
- Filament index (scale 0-5)
- Filamentous bacteria
 - Abundance of filaments (scale from 1-5)
 - Identity based on cell shape, cell diameter, shape of filament, staining properties
- 26 different types in municipal WWTP based on morphological characters
- 20 new types from industrial WWTP

- Conventional identification
 - Noli
 - Ppx3
 - Meg968
 - MC2
 - Nostoc649

- Molecular approach
 - Use bacteria DNA material to determine identity
 - FISH or other molecular methods

- Identity of filamentous bacteria in activated sludge

- Filamentous bacteria in Danish WWTP

- Chloroflexi/TM7/Nocardioforms
- Alphaproteobacteria
- Nostocoida limicola
- Type 1851, 0092, 0803
- Type 1863
- Haliscomenobacter hydrossis
- Nocardioforms

- Type 1701
- Alphaproteobacteria
- Chloroflexi
- TM7
- Nocardioforms

- Type 021N
- Alphaproteobacteria
- Chloroflexi
- TM7
- Nocardioforms
Abundance of filamentous bacteria in WWTP

Municipal WWTP
1. Microthrix parvicella
2. Chloroflexi (Type 0041, 0803, 0092, 1851)
3. TM7 related (Type 0041)
4. H. hydrossis and H. hydrossis-like
5. Mycolata

Based on Microbial database, determined by morphology and FISH. 50 full scale WWTP

Industrial WWTP
1. filamentous Alphaproteobacteria (N. limicola)
2. Thiothrix sp.
3. Mycolata
4. Chloroflexi (Type 0041, 0803, 0092, 1851)
5. Morphotype 0041 (TM7)

Based on Dynafilm data; 126 different industrial WWTP samples. Determined by morphology and FISH

Different biological processes (nitrification, denitrification, phosphorous removal)
- Aerobic, anoxic and anaerobic

Substrates present in municipal WWTP
- Carbohydrates (18%)
- Lipids (31%)
- Protein (30%)
- Volatile fatty acids (acetate and propionate up to 95%)

Municipal WWTP: slowly biodegradable organic matter (SBCOD)

Industrial WWTP: more easily biodegradable compounds (RBCOD)
- Slaughterhouse, dairy or fishing industry

Methods for ecophysiological studies

- Microautoradiography, MAR
- Types of substrates (simple substrates)
- Electron acceptor conditions (oxygen, nitrate or nitrite, no oxygen)
- Storage capacity (poly-β-hydroxyalkanoates)
- Excretion of exo-enzymes
- Surface properties
Ecophysiology on filamentous bacteria

Filamentous Alphaproteobacteria or N. limicola

5 species of filamentous Alphaproteobacteria

Very common in industrial WWTP

<table>
<thead>
<tr>
<th>MAR</th>
<th>Group 1*</th>
<th>Group 2**</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-acceptor</td>
<td>O₂, NO₂, NO₃</td>
<td>O₂, NO₂, NO₃</td>
</tr>
<tr>
<td>Fatty acids</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Sugars</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Amino acids</td>
<td>-</td>
<td>(+)</td>
</tr>
<tr>
<td>Alcohol</td>
<td>-</td>
<td>(+)</td>
</tr>
</tbody>
</table>

*Synechococcus: Monilibacter bovaceus, Allysosphaera europaea & Boltonicola proteobacter
**Alphaproteobacteria: Alysiosphaera europaea & Meganema perideroedes

Filamentous Alphaproteobacteria or N. limicola

Storage capacity, PHA

Surface charge

Versatile filaments

Large PHA storage capacity

No exoenzyme activity

Hydrophobic cell surface

Occurring in 60% of the industrial samples

Only rarely in municipal WWTP

Responsible for bulking in 25%
Morphological representatives in
Actinobacteria
Firmicutes
Chloroflexi
Planctomycetes

Very limited knowledge exist on their physiology
Industrial samples mainly Alphaproteobacteria
Municipal WWTP, only rarely identity unknown

Curvibacter related filaments or Type 1701

- Distributed in both municipal and industrial WWTP
- Present in relatively low abundance
- Substrates: Some sugars, amino acids and proteins
- Conditions: Aerobic, anoxic with nitrate and nitrite
- Surface properties: Hydrophilic
- Exo-enzymatic activity: Protease

Chloroflexi sp. (Type 1851)

- Distributed in both municipal and industrial WWTP
- Present in relatively low abundance
- Ecophysiology:
 - Substrates: sugars, glucose, few short chain fatty acids and N-acetylglucosamine
 - Conditions: aerobic
 - No significant PHA storage
 - Exoenzymes: galactosidase, glucuronidase, chitinase
 - Surface properties: Hydrophilic

Filaments with attached growth

- Distributed in both municipal and industrial WWTP
- Present in relatively low abundance
- Belong to different phyla: TM7, Betaproteobacteria, Chloroflexi
Type 0092 and 0803 (Chloroflexi)

- Distributed in both municipal and industrial WWTP (different species?)
- Present between 2-8% of municipal samples

Ecophysiology for 0803:
- Substrates: glucose, and some N-acetylglucosamine
- Conditions: aerobic, also anoxic and anaerobic
- Exoenzymes: many different including protease (chitinase, esterase etc)

0803 Hydrophobic (can be found in foam), no significant PHA

TM7 positive filaments (Type 0041)

- Found frequently in municipal and industrial WWTP
- Approx. 15% are TM7 probe positive others unidentified
- Rarely cause bulking. Forming backbone of sludge flocs

Ecophysiology
- Amino acids and sugars
- Under all conditions O_2(NO_3, anaerobic)
- Protease activity
- No significant PHA storage

Bacteroidetes sp. H. hydrossis

- Haliscinemobacter hydrossis
- Distributed in both municipal and industrial WWTP
- Industrial WWTP: Present in 42%
 - High abundance in 16%
- Municipal WWTP: average 2%
- Epiflobacter: epiphytic bacteria on filaments, abundance 6%

Ecophysiology:
- Substrates: sugars, glucose and N-acetylglucosamine
- Conditions: aerobic
- No significant PHA storage
- Surface properties: Hydrophobic
- Exoenzymes: galactosidase, glucuronidase, chitinase
- Epiflobacter: utilize proteins and express protease
 - Are often on filaments affiliated to Chloroflexi, TM7 and Curvibacter
Distributed in mainly plants without full nitrogen and phosphorus removal
Thiothrix present in 38% of 126 industrial WWTP
Morphotype 021N only in 4%
Municipal WWTP 1%
Correlation with the presence of sulfide
Different species, defined by gene probes
Thiothrix: probe Tni
Morphotype 021N: Thiothrix eikelboomii probe 021N

<table>
<thead>
<tr>
<th>Thiothrix</th>
<th>021N</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2</td>
<td>O_3</td>
</tr>
<tr>
<td>few or no S granules</td>
<td>S granules</td>
</tr>
<tr>
<td>short chain fatty acids</td>
<td>long chain fatty acids</td>
</tr>
<tr>
<td>sugars</td>
<td>amino acids</td>
</tr>
</tbody>
</table>

Two species; M. parvicella & M. calida
Present in municipal WWTP (ca. 6%)
Responsible for both bulking and foaming

Ecophysiological studies:
- Only long chain fatty acids
- Lipase and esterase activity
- Activity under all conditions
- Anaerobic conditions only storage

Mycolata; morphological definition
Many different species, not all are known
Foam formation but seldom bulking

GALO: Gordonia amarae
PTLO: Pine tree-like organisms
Different Families: Corynebacteriaceae, Williamsiaceae, Tsukamurellaceae, Mycobacteriaceae, Dietziaceae, Nocardiaceae, Gordoniaceae
Identification of Mycolata by FISH

Gene probes:
- Myc657 (most Mycolata)
- Gor596 (most of the family Gordonia)
- Gam205 (the species Gordonia amarae)
- Spin1449 (the species Skermania piniformis)

Indicate different families

Mycolata sp. or nocardia

Die quickly in foam - remain there

Many species, different specialized populations
Some long chain fatty acids
Others soluble substrates
Different exo-enzymes
Some can be chemically controlled

Unidentified species

Abundant filaments
- Remaining filaments with attached growth
 - Many affiliated to Chloroflexi but no probes exist
- Still many morphotypes of Chloroflexi
 - Some inside sludge flocs and others outside
- Other unidentified are not very abundant

Physiology of filamentous bacteria

Substrate types
- Specialized on a single type
 - Sugars, lipids, proteins
- Versatile - use many substrate types
 - Short chain fatty acids, long chain fatty acids, sugars, amino acids, alcohols

E-acceptor conditions
- Different conditions (oxygen, nitrate, nitrate)
 - Only oxygen

Storage capacity
- Starvation sensitivity

Excretion of exo-enzymes
- Complex substrates

Surface properties
- Related to some extent to substrate uptake
Versatile filaments

Short chain fatty acids, long chain fatty acids, sugars, amino acids, alcohols

<table>
<thead>
<tr>
<th>Identity</th>
<th>E-acceptor conditions</th>
<th>Exo-enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filamentous Alphaproteobacteria (N. limicola)</td>
<td>O₂, (NO₃ and NO₂)</td>
<td>No</td>
</tr>
<tr>
<td>Thiothrix (021N)</td>
<td>O₂</td>
<td>No</td>
</tr>
<tr>
<td>Mycelia (nocardioforms)</td>
<td>O₂, (NO₃ and NO₂), anaerobic</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Specialized filaments

<table>
<thead>
<tr>
<th>Identity</th>
<th>Substrate</th>
<th>E-acceptor conditions</th>
<th>Exo-enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroflexi Type 1851 thin filaments (H. hyphogea)</td>
<td>Sugars</td>
<td>O₂</td>
<td>Polysaccharide degradation</td>
</tr>
<tr>
<td>Chloroflexi Type 0803</td>
<td>Sugars</td>
<td>O₂, (NO₃ and NO₂)</td>
<td>Polysaccharide degradation</td>
</tr>
<tr>
<td>Coriobacter-related (1-701) TMT filaments (0041)</td>
<td>Amino acids</td>
<td>O₂, (NO₃ and NO₂)</td>
<td>Protein degradation</td>
</tr>
<tr>
<td>Microaerol</td>
<td>Lipoates</td>
<td>O₂, (NO₃ and NO₂)</td>
<td>Lipid degradation</td>
</tr>
<tr>
<td>Thiothrix sp. (021N)</td>
<td>Sulfides</td>
<td>O₂, (NO₃ and NO₂)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Formulating control strategies

- What filaments are present?
- What triggers the excessive proliferation of filaments
- What causes foam formation
- Correlations with filament identity and process conditions (WWTP type etc.)

Research needs

- Identification of the remaining important filaments
- Some morphotypes with attached growth
- Gene probes for new filamentous species
- Ecophysiology of new filamentous species
- Better understanding of the ecosystem “activated sludge”
- Full scale experiments for control strategies
People involved

Artur T. Mielczarek
Trine Rolighed Thomsen
Jeppe Lund Nielsen
Zaneta Remesova
Kathryn Eales
Yunhong Kang
Marianne Stevenson
Susanne Bieltz
Jane Aili